Name
Date $\qquad$

## Definitions

Point--an exact location in geometry. Named by a letter. $\mathbf{C}$ is read as "point C"

Line--is straight and extends in both directions without end. Named by at least 2 points and line symbol. $\overleftrightarrow{~ J K ~ i s ~ r e a d ~ a s ~ " l i n e ~ J K " ~}$

Line Segment--The part of a line that connects two points. It has definite end points. Named by at least 2 points and line segment symbol.
$\overline{P Q}$ is read as "line segment $P Q$ "

1. Use the following directions to draw a figure in the box to the right.
a. Draw two points: $A$ and $B$.
b. Use a straightedge to draw $\overleftrightarrow{A B}$.
c. Draw a new point that is not on $\overleftrightarrow{A B}$. Label it $C$.
d. Draw $\overline{A C}$.
e. Draw a point not on $\overleftrightarrow{A B}$ or $\overline{A C}$. Call it $D$.
f. Construct $\overleftrightarrow{C D}$.
2. Use the following directions to draw a figure in the box to the right.
a. Draw two points: $A$ and $B$.
b. Use a straightedge to draw $\overline{A B}$.
c. Draw a new point that is not on $\overline{A B}$.

Label it $C$.
d. Draw $\overleftrightarrow{B C}$.
e. Draw a new point that is not on $\overline{A B}$ or $\overleftrightarrow{B C}$. Label it $D$.
f. Construct $\overleftrightarrow{A D}$. $\square$
3. a. Label some points on each figure below. Extend a line segment in each picture to make a line.
b. Use those points to label and name representations of each of the following in the table.


|  | House | Flash drive |
| :--- | :--- | :--- |
| Line |  |  |
| Line segment |  |  |

Name $\qquad$ Date $\qquad$


Definitions
A

Ray--A portion of a line which starts at a point and goes off in a particular direction to infinity. Named by at least 2 points and a ray symbol.


Angle-any two rays or line segments sharing the same point (vertex) create an angle. Named in two ways:
$\angle A B C$ The angle symbol, followed by three points that define the angle.
As long as the vertex is the middle letter, the order is not important.
$\angle B$ Just by the vertex.

## Use the following directions to draw figures in the boxes.

1. a. Draw two points: $A$ and $B$.
b. Use a straightedge to draw ray $\overrightarrow{A B}$.
c. Draw a new point that is not on ray $\overrightarrow{A B}$. Label it $C$.
d. Draw line segment $\overline{A C}$.
e. Draw a point not on ray $\overrightarrow{A B}$ or line segment $\overline{A C}$.
f. Call it $D$.
g. Construct line $\overleftrightarrow{C D}$.
h. Use the points you've already labeled to name one angle. $\qquad$

2 a. Draw two points: $A$ and $B$.
b. Use a straightedge to draw line segment $\overline{A B}$.
c. Draw a new point that is not on line segment $\overline{A B}$. Label it $C$.
d. Draw ray $\overrightarrow{B C}$.
e. Draw a new point that is not on line segment $\overrightarrow{A B}$ or ray $\overrightarrow{B C}$. Label it $D$.
f. Construct line $\overleftrightarrow{A D}$.
g. Identify $\angle D A B$ by drawing an arc to indicate the position of the angle.
h. Identify another angle by using points that you have already drawn. $\qquad$
3. a. Extend the line segments in this diamond to make rays.
b. Assign letters to the points.
c. Use those points to label and name two of each shape in the following in the table.


|  | Diamond |
| :--- | :--- |
| Rays |  |
| Line <br> segments |  |
| Angles |  |

Name $\qquad$ Date $\qquad$


1. Use the right angle template that you made in class to determine if each of the following angles is greater than, less than, or equal to a right angle. Label each as greater than, less than, or equal to, and then connect each angle to the correct label of acute, right, or obtuse.

2. Use your right angle template to identify acute, obtuse, and right angles within Picasso's painting Factory, Horta de Ebbo. Trace at least two of each, label with points, and then name them in the table below the painting.

© 2013 Estate of Pablo Picasso / Artists Rights Society (ARS), New York Photo: Erich Lessing / Art Resource, NY.

| Acute angle |  |  |
| :--- | :--- | :--- |
| Obtuse angle |  |  |
| Right angle |  |  |

3. Construct each of the following using a straightedge and the right angle template that you created. Explain the characteristics of each by comparing the angle to a right angle. Use the words greater than, less than, or equal to in your explanations.

## a. Acute angle

An acute angle is $\qquad$ a right angle.
b. Right angle

A right angle is $\qquad$ a right angle.

## c. Obtuse angle

An obtuse angle is $\qquad$ a right angle.

Name $\qquad$ Date $\qquad$


1. On each object, trace a pair of lines that appear to be perpendicular.

2. How do you know if two lines are perpendicular?
3. In the grids below, use the given segments in each grid to draw a line that is perpendicular using a straightedge.


4. Use the right angle template that you created in class to determine which of the following figures have a right angle. Mark a right angle with a small square. Name a pair of perpendicular lines if the shape has right angles. Cross out shapes with no perpendicular lines.
a.

c.

d.

e.

f.

g.

5. Mark each right angle on the following figure with a small square. (Note: A right angle does not have to be inside the figure.)

6. True or false? Shapes that have at least one right angle also have at least one pair of perpendicular sides. Explain your thinking.

Name $\qquad$ Date $\qquad$


1. On each object, trace one pair of lines that appear to be parallel.

2. How do you know if two lines are parallel?
3. In the grids below, draw a line that is parallel to each segment using a straightedge.


4. Determine which of the following figures have lines that are parallel. Mark a pair of parallel lines with arrowheads, and then identify the parallel lines with a statement. Cross off shapes that do not have parallel lines.
a.

b.

c.

d.

e.

f.

g.

h.

5. Circle the pair of parallel lines.

$C \longrightarrow D$


G
H
$\qquad$
$\qquad$

1. Make a list of the measures of the benchmark angles you drew, starting with Set A. Both sets have been started for you.
a. Set $\mathrm{A}: \underline{45^{\circ}, 90^{\circ}}$
b. Set $\mathrm{B}: 30^{\circ}, 60^{\circ}$,
2. Circle any angle measures that appear on both lists. What do you notice about them?
3. List the angle measures from Problem 1 that are acute. Trace each angle with your finger as you say its measurement.
4. List the angle measures from Problem 1 that are obtuse. Trace each angle with your finger as you say its measurement.
5. We found out today that $1^{\circ}$ is $\frac{1}{360}$ of a whole turn. It is 1 out of $360^{\circ}$. That means a $2^{\circ}$ angle is $\frac{2}{360}$ of a whole turn. What fraction of a whole turn is each of the benchmark angles you listed in Problem 1?

Set A: $\qquad$

Set B: $\qquad$
$\qquad$
6. How many $45^{\circ}$ angles does it take to make a full turn? $\qquad$
7. How many $30^{\circ}$ angles does it take to make a full turn? $\qquad$


Name $\qquad$ Date $\qquad$


1. Use a protractor to measure the angles. Record the measurements in degrees. Round to the nearest 5 degrees.


d.




Name $\qquad$ Date $\qquad$
Construct angles that measure the given number of degrees. Draw an arc to indicate the angle that was measured.

1. $30^{\circ}$

2. $115^{\circ}$

3. $65^{\circ}$

4. $135^{\circ}$

5. $5^{\circ}$
6. $175^{\circ}$
7. $115^{\circ}$

Name $\qquad$ Date $\qquad$


1. Joe, Steve, and Bob stood in the middle of the yard and faced the house. Joe turned $90^{\circ}$ to the right. Steve turned $180^{\circ}$ to the right. Bob turned $270^{\circ}$ to the right. Name the object that each boy is now facing.

Joe $\qquad$


Fence
2. Monica looked at the clock at the beginning of class and at the end of class. How many degrees did the minute hand turn from the beginning of class until the end?

3. The skater jumped into the air and did a 360 . What does that mean?
4. Mr. Martin started to drive from his house to the store without his wallet. He did a 180. Where is he heading now? $\qquad$

5. John turned the knob of the shower $270^{\circ}$ to the right. Draw a picture showing the position of the knob after he turned it.


Before


After
6. Barb used her scissors to cut out a coupon from the newspaper. How many quarter-turns does she need to turn the paper in order to stay on the lines?



Name $\qquad$ Date $\qquad$

1. Complete the table.

| Pattern block | Total number <br> that fit <br> around 1 <br> vertex | One interior angle <br> measures... | Sum of the angles around a <br> vertex |
| :--- | :--- | :--- | :--- |
| a. |  |  |  |

2. Find the measurements of the angles indicated by the arcs.

| Pattern blocks |  |  | Angle measure |
| :--- | :--- | :--- | :--- |
| a. |  |  |  |

3. Use two or more pattern blocks to figure out the measurements of the angles indicated by the arcs.

|  |  | Angle measure | Addition sentence |
| :--- | :--- | :--- | :--- |
| a. |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |

Name
Date $\qquad$
Write an equation and solve for the measure of $\angle x$.

1. $\angle C B A$ is a right angle.


$$
45^{\circ}+\ldots=90
$$

$$
x^{\circ}=
$$

$\qquad$
3. $\angle I J K$ is a straight angle.

$+70^{\circ}=180^{\circ}$

$$
x^{\circ}=
$$

$\qquad$
4. $\angle M N O$ is a straight angle.

$x^{\circ}=$ $\qquad$

Solve for the unknown angle measurements. Write an equation to solve.

1. Solve for the measurement of $\angle T R U$.
2. Solve for the measurement of $\angle Z Y V$.
$\angle Q R S$ is a straight angle. $\angle X Y Z$ is a straight angle.


3. In the following figure, $A C D E$ is a rectangle. Without using a protractor, determine the measurement of $\angle D E B$. Write an equation that could be used to solve the problem.


Name $\qquad$ Date $\qquad$


1. Circle the figures that have a correct line of symmetry drawn.
a.

b.

c.

d.

2. Draw all lines of symmetry for the following figures. Write the number of lines of symmetry for each figure.

b. $\qquad$

a. $\qquad$

d. $\qquad$ e. $\qquad$
f. $\qquad$

g. $\qquad$

h. $\qquad$

i. $\qquad$
3. Half of each figure below has been drawn. Complete each figure.
4. 

a)

|  |  |  |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |

b)

c)

d)


Name $\qquad$ Date $\qquad$


1. Classify each triangle by its side lengths and angle measurements. Circle the correct names.

|  |  | Classify Using <br> Side Lengths | Classify Using <br> Angle Measurements |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| a. | Equilateral | Isosceles | Scalene | Acute | Right | Obtuse |
| Equilateral | Isosceles | Scalene | Acute | Right | Obtuse |  |
|  |  |  |  |  |  |  |

2. $\triangle A B C$ has one line of symmetry as shown. What does this tell you about the measures of $\angle A$ and $\angle C$ ?

$\angle A$ $\qquad$ $\angle C$
3. $\triangle D E F$ has three lines of symmetry as shown. $\triangle D E F$ has a perimeter of 30 cm . Label the side lengths.

4. Use a ruler to connect points to form two other triangles. Use each point only once. None of the triangles may overlap. Some points will not be used. Name and classify the triangles below. The first one has been done for you.


| Name the Triangles <br> Using Vertices | Classify by Side Length | Classify by Angle <br> Measurement |
| :---: | :---: | :---: |
| $\Delta F J K$ | Scalene | Obtuse |
|  |  |  |
|  |  |  |

6. Can a triangle have two right angles? Use a drawing to explain.
